Didaktik der
Mathematik

UNIVERSITÄT ERLANGEN-NÜRNBERG
     Impressum     Datenschutz    Barrierefreiheit     Kontakt    Startseite >> Mittel-/Realschule - lin. Algebra und Analytische Geometrie
Mathematikexamen - Fachwissenschaft - Haupt-/Realschule - lin. Algebra und Analytische Geometrie (43911, 43912)

Themenübersicht

Bitte beachten Sie, daß eine eindeutige Zuordnung der Aufgaben zu einem einzelnen Themenbereich nicht immer möglich ist. Die in der nachfolgenden Tabelle getroffene Einordnung hat deshalb keinen verbindlichen Charakter. Sie soll lediglich einen Überblick über Themenschwerpunkte geben und den schnellen Zugriff auf die Aufgaben ermöglichen.

 

22

I

21

II

21

I

20

II

20

I

19

II

19

I

18

II

18

I

17

II

17

I

16

II

16

I

15

II

15

I

14

II

14

I

13

II

13

I

12

II

12

I

11

II

11

I

10

II

10

I

09

II

09

I

08

II

08

I

07

II

07

I

06

II

06

I

05

II

05

I

04

II

04

I

03

II

03

I

02

II

02

I

01

II

01

 I

Quadriken R2

I/5

I/5

II/4

III/5

I/5

II/5

III/5

I/5

III/5

I/5

II/5

III/5

II/5

III/5

I/5

II/5

III/5

I/5

II/3

III/5

I/5

II/5

III/5

I/5

II/5

III/5

I/5

II/5

III/5

I/5

II/5

II/5

III/5

II/5

III/5

 

I/4

II/5

III/5

 

 

I/2

II/5

III/5

 

I/2

II/1

II/5

II/1

III/5

I/5

II/5

III/4

III/4

I/1

I/5

II/1

III/3

I/5

 

 

I/4

I/5

III/2

I/2

II/5

II/5

III/4

II/5

I/5

III/4

III/5

III/4

II/4

III/5

III/3 II/5

II/4

III/4

I/4 III/4 I/5 II/4  

II/2

Euklidische
Quadrik R2

II/5                                                                                    
Quadriken R3                                            
  I/3

II/5

III/5

II/4 II/5

I/5

III/4

  I/4 II/3

I/3

II/5

I/5

II/3

III/4

III/5

III/4 I/3 II/3 I/5 II/5 I/3 I/5 II/3
Bilinearform, Orthogonalität, Kreuzprodukt, Skalarprodukt

I/3

II/4b

III/2

I/2

III/4

III/1

I/4

III/2c

III/3

III/4b

I/4

III/3

II/4

I/4

II/3

I/4 I/2 I/2 II/3 III/1

I/4

II/4

II/4 III/4     III/5      

I/4

II/2

II/4

 

II/3

I/3

I/4

III/3

    III/3       I/5  

I/3

III/2

          III/4    
Bewegung, affine Abbildung, ON Projektion I/4 II/3

I/3

III/2

II/5

I/1

II/4

III/4

I/4

I/2

  III/3 III/3

II/4

III/4

II/2 I/4 III/4 I/4 I/5   III/5

I/4

II/3

III/4

 

II/4

III/3

   
    I/1      

I/1

I/2

III/5 I/4   II/5 I/2       III/3     III/4  
Determinante II/2                 II/1                 III/1 I/1    
          III/2                   III/5 II/1    

I/4

III/4

Geometrie (Abstand, Lot, Trapez, ...)

II/3

III/3

II/5

III/3b

II/4         II/5 III/4 I/4 III/3   II/3

III/2

III/3

 

I/3

II/4

I/4

II/2

III/4

II/4

III/3

 

I/5

I/4

II/3

II/5

III/2

I/4

II/4

III/2

II/2

III/5

I/2

 

 

I/5

II/4

III/5

I/5

II/4

I/1

II/4

III/3

III/5

II/4

III/2

II/4

III/2

  III/1 I/3  

I/4

I/5

II/3

 

II/5

III/3

I/4

II/4

III/1

I/4

II/4

II/1

II/2

I/4

II/4

III/1

 
Homomorphismen / Kern / Bild / EW / EV /Diagonalisierbar III/4 III/2

I/1

I/2

I/4

II/2

II/3

III/3

III/4

I/2b

I/3

II/2

II/3

II/4

III/2a

III/4a

I/3

II/2

III/2

I/3

I/5

II/2

II/3

III/1

III/2

III/3

I/3

II/1

II/2

III/2

III/3

I/1

I/3

III/3

II/1

II/2

I/1

I/3

I/4

II/2

III/1

III/2

I/3

II/2

II/3

III/2

I/1

I/2

II/1

II/4

III/4

I/1

I/3

II/2

II/3

III/2

I/1

I/2

I/5

II/2

III/2

III/3

I/2

I/3

I/5

II/2

II/3

III/1

III/4

 

 

I/3

II/1

III/3

 

 

II/1

II/2

III/4

 

 

I/1

II/3

II/5

III/2

I/1

I/3

II/1

I/2

I/4

II/2

II/4

I/2

I/3

II/2

III/3

II/4

II/1

I/5

III/5

I/3

II/5

III/1

I/2

I/4

III/1

 

I/2

II/1

III/4

I/2

II/3

III/1

I/2

I/3

II/2

II/4

III/3

I/4

II/1

III/4

I/1

II/1

II/2

I/4

II/3

III/3

I/2

II/2

III/3

I/2

II/2

III/2

I/1

II/1

II/3

III/3

III/5

III/2

III/3

III/5

I/1

I/5

II/1

I/2

I/3

II/2

III/1

III/2

II/1

II/2

III/3

I/2

I/3

II/1

III/3  

I/1

I/2

I/5

II/4

Kugeln, Kreis                                            
        II/5 I/4     II/5 I/4 I/4

I/4

II/2

  I/4 III/4   III/4 I/4   I/1
Lineare Gleichungssysteme III/5b

I/1

II/1

III/3a

   

II/1

III/1

I/1

II/1

 

II/4

III/1

II/1

II/1 I/1 III/1  

II/1

III/1

 

I/1

 

 

I/1

 

III/1   III/1   III/5 III/1  

I/1

I/1

III/1

  III/1

I/1

III/1

III/1

I/3

II/1

III/1

III/1

II/1

III/1

  I/1 III/1 II/1

I/1

III/1

I/1

II/1

II/2

III/1

I/2   II/3

I/3

II/1

I/2
Matrizen (Gleichungen) sym., orth., inverse III/5a     I/1   III/4

I/1

II/4

III/1

I/2

II/1

I/1

III/1

III/3

III/2    

 

 

 

I/3

II/3

II/4

III/2

 

 

I/5

II/3

 

 

I/3

I/4

I/5

II/4

III/1

I/2

II/2

I/3

II/5

III/3

III/4

 

 

II/3

I/2

I/3

I/2

III/4

III/5

I/3

II/4

III/2

III/2

III/3

II/2

 

II/1   II/2 I/4 II/2 II/3 I/3 II/2

I/2

II/1

III/1

 

I/1

III/3

I/2

III/2

I/3

III/2

II/2

III/2

I/1

II/2

II/3

III/2

III/3

II/1

II/2

II/3

III/3

I/3

II/3

III/2

Spiegelung, Drehung III/5c I/4         I/2 II/1

II/4

III/3

    II/4  

 

 

 

 

I/4

III/3

III/3          
  III/3

III/5

III/4

I/5

II/3

I/3 II/3 III/5

I/3

III/4

II/4

I/2

II/4

  II/4  

II/3

III/5

    I/3

III/5

I/2

II/5

III/2  
Analytische Geometrie         I/2                                                                            
Eigenwert/
Eigenvektoren

I/1

II/1

II/4a

I/3   III/2b II/3                                                                            
VR / UR / Basis / Dimension / ON Basis

I/2

III/1

II/2

III/1

II/1

I/2a

I/2c

II/2

III/1

    III/4 III/2

I/2

I/3

II/3

II/4

I/3

I/4

I/2

II/1

I/3

II/2

II/1

I/2

II/2

III/1

I/1

III/2

 

I/5

III/2

I/1

II/3

III/2

II/1

III/1

III/2

 

II/2

I/1

II/3

I/5

II/1

II/3

III/3

II/3

II/5

 

 

III/2

II/2

III/2

II/1

III/2

I/2

I/3 I/5

I/1

II/1

I/1

III/3

III/2

II/2

II/3

      II/4 I/1

I/2

III/2

III/1

I/1

 

II/1

III/1

Letzte Bearbeitung: 30.03.2022 Kontakt: thomas.weth@fau.de