Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Bei den folgenden Aufgaben 1 - 5 sind alle Schlussfolgerungen und nicht-trivialen Rechenschritte mit einem erklärenden Text zu begründen. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1:
Bestimmen Sie diejenige holomorphe Abbildung \(f : \mathbb{C} \to \mathbb{C} \), die die harmonische Funktion \(u(x, y) = x^3 y - xy^3 \) als Realteil hat und die Bedingung \(f(0) = 3i \) erfüllt. Drücken Sie \(f \) als Funktion der komplexen Variablen \(z = x + iy \) aus.

Aufgabe 2:

a) Zeigen Sie, dass alle Nullstellen des Polynoms \(P(z) = 3z^3 + z + i \) in der offenen komplexen Einheitskreisscheibe liegen.

b) Berechnen Sie das Integral \(\int_{i-\infty}^{i+\infty} \frac{e^{iz}}{3z^3 + z + i} \, dz \).

c) Sei \(D = \{ z \in \mathbb{C} : |z| > 1 \} \setminus \{ x \in \mathbb{R} : x < 0 \} \). Gibt es eine holomorphe Abbildung \(h : D \to \mathbb{C} \) derart, dass \(P(z) = e^{h(z)} \) (mit \(P \) wie in (a)) gilt?

Aufgabe 3:
Sei \(G = \mathbb{C} \setminus \{ iy : y \in \mathbb{R}, y \leq 0 \} \), und sei \(f : G \to \mathbb{C} \) eine Funktion mit \(f(1) = 1 \) und \(f(z)^2 = z \) für alle \(z \in G \).

a) Zeigen Sie, dass \(f \) stetig auf \(\mathbb{R} \) ist, wenn man noch \(f(0) = 0 \) setzt.

b) Berechnen Sie das Integral \(\int_{C} f(z) \, dz \), wobei \(C \) den positiv orientierten, geschlossenen Weg bezeichne, der den Halbkreis \(\{ z \in \mathbb{C} : |z| \leq 1, 0 \leq \arg z \leq \pi \} \) berandet.

Aufgabe 4:
Erstellen Sie für das System

\[
\dot{x} = y, \quad \dot{y} = |x|
\]

das Phasenportrait und bestimmen Sie explizite Darstellungen aller Lösungen, die für \(t \to \infty \) oder \(t \to -\infty \) gegen \((0, 0) \) konvergieren. Erklären Sie ferner, warum jedes zu diesem System gehörige Anfangswertproblem eindeutig lösbar ist.

Fortsetzung nächste Seite!
Aufgabe 5:

Sei $C[0,1]$ der Vektorraum aller stetigen Funktionen $f : [0,1] \rightarrow \mathbb{R}$ mit der Metrik

$$d(f, g) := \max_{0 \leq x \leq 1} |f(x) - g(x)|,$$

und sei $C^1_0[0, 1]$ der Unterraum aller stetig differenzierbaren Funktionen $f : [0,1] \rightarrow \mathbb{R}$ mit $f(0) = 0$. Beweisen Sie:

a) $C^1_0[0, 1]$ ist weder offen noch abgeschlossen in $C[0,1]$.

b) Die Abbildung $A : C^1_0[0, 1] \rightarrow C[0,1]$ mit $A(f) := f'$ ist linear und bijektiv.

c) Die Abbildung A ist nicht stetig zwischen den metrischen Räumen $(C^1_0[0, 1], d_1)$ und $(C[0,1], d)$.

d) Bezeichnet d_1 die Metrik

$$d_1(f, g) := \max_{0 \leq x \leq 1} |f(x) - g(x)| + \max_{0 \leq x \leq 1} |f'(x) - g'(x)|,$$

so ist die Abbildung A stetig zwischen den metrischen Räumen $(C^1_0[0, 1], d_1)$ und $(C[0,1], d)$.