Thema Nr. 2

(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu versehen; Lösungen, die nur aus Rechnungen bestehen, erhalten keinen Punkt. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1:

Es sei \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \), \((t, x) \mapsto \frac{xt}{\sqrt{x^2 + 1}}\). Zeigen Sie:

a) Das Anfangswertproblem

\[x' = f(t, x) \quad , \quad x(0) = 1 \]

hat eine eindeutige maximale Lösung \(\lambda : I \to \mathbb{R} \).

b) Für das maximale Lösungsintervall gilt: \(I = \mathbb{R} \).

c) Für alle \(t \geq 0 \) ist \(\lambda(t) \in [1, 1 + \frac{t^2}{2}] \).

(6 Punkte)

Aufgabe 2:

Gegeben sei die matrixwertige Funktion \(A :]-1, 1[\to \mathbb{R}^{2 \times 2} \), \(t \mapsto \begin{pmatrix} 2t & t \\ 0 & \frac{2t}{t^2 - 1} \end{pmatrix} \).

Zeigen Sie, dass das Anfangswertproblem

\[x'(t) = A(t)x(t) \quad , \quad x(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \]

eine eindeutige maximale Lösung besitzt und berechnen Sie diese.

(6 Punkte)
Aufgabe 3:
Berechnen Sie für $\gamma : [0, 2\pi] \to \mathbb{C}, t \mapsto 2e^{2it}$ und für $\eta : [0, 2\pi] \to \mathbb{C}, t \mapsto i + e^{-it}$ die Kurvenintegrale:

a) \[\int_{\gamma} \frac{e^{iz} - 1}{z^2} \, dz; \]

b) \[\int_{\eta} \frac{e^z}{(z-i)^3} \, dz; \]

c) \[\int_{\gamma} e^{\frac{1}{z}} \, dz. \]

(6 Punkte)

Aufgabe 4:
Es sei $f : \mathbb{C}\setminus\{-1, 1\} \to \mathbb{C}, z \mapsto \frac{z^2}{z^2 - 1}$.

a) Bestimmen Sie für jede der Singularitäten von f den Typ und berechnen Sie das Residuum.

b) Zeigen Sie, dass für $U := \{z \in \mathbb{C} : |z| > 2\}$ die Einschränkung $f_U : U \to \mathbb{C}, z \mapsto \frac{z^2}{z^2 - 1}$ eine holomorphe Stammfunktion besitzt.

(6 Punkte)

Aufgabe 5:
Entscheiden Sie, bei welchem der drei Paare von offenen Teilmengen von \mathbb{C} es eine biholomorphe Abbildung zwischen den beiden Mengen gibt:

a) $\mathbb{C}\setminus\{2\}$ und $E := \{z \in \mathbb{C} : |z| < 1\}$;

b) $\mathbb{C}\setminus(-\infty, 0]$ und $\mathbb{H} := \{z \in \mathbb{C} : \text{Re}(z) > 0\}$;

c) $S := \{z \in \mathbb{C} : -1 < \text{Im}(z) < 1\}$ und \mathbb{C}.

(6 Punkte)