Thema Nr. 3
(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Auf jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte

Aufgabe 1:

Seien \(A := \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 2 \end{pmatrix} \), \(b : \mathbb{R} \to \mathbb{R}^3 \), \(b(t) := \begin{pmatrix} -t \\ e^{-t} \\ 1 + t \end{pmatrix} \).

a) Berechnen Sie ein Fundamentalsystem für die Differentialgleichung \(\dot{x} = Ax \).

b) Berechnen Sie die maximale Lösung des Anfangswertproblems

\[
\dot{x} = Ax + b(t), \quad x(0) = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}.
\]

Aufgabe 2:

Sei \(D := \{(t, x) \in \mathbb{R}^2 \mid t^2 + x^2 < 1\} \) und \(f : D \to \mathbb{R}, f(t, x) := \sqrt{1 - t^2 - x^2} \).

Zeigen Sie:

a) Das Anfangswertproblem \(\dot{x} = f(t, x), \quad x(0) = 0 \)

hat eine eindeutig bestimmte, maximale Lösung \(x : [a, b] \to \mathbb{R} \) mit \(-\infty < a < 0 < b < \infty\).

b) Die Grenzwerte \(x(a) := \lim_{t \to a} x(t), \quad x(b) := \lim_{t \to b} x(t) \) existieren in \(\mathbb{R} \).

c) Es gilt: \(-a = b, \quad b^2 + x(b)^2 = 1, \quad \text{und} \quad \frac{1}{\sqrt{2}} < b < 1 \).

Fortsetzung nächste Seite!
Aufgabe 3:

a) Sei
\[g : \mathbb{R}^2 \to \mathbb{R}, \quad g(x, y) := x^3 + 3xy^2 - 3xy. \]

Bestimmen Sie alle kritischen Punkte von \(g \) und entscheiden Sie jeweils, ob es sich um ein (strenges) lokales Maximum oder Minimum oder um einen Sattelpunkt handelt.

b) Welche stationären Lösungen des Differentialgleichungssystems
\[\begin{align*}
\dot{x} &= -6xy + 3x \\
\dot{y} &= 3x^2 + 3y^2 - 3y
\end{align*} \]

sind stabil, welche instabil?

Aufgabe 4:

a) Sei \(U := \{ z \in \mathbb{C} \mid |z| < 2 \} \) und \(f : U \to \mathbb{C} \) holomorph mit \(f(0) = 0 \) und \(f(1) = 1 \). Zeigen Sie, dass es ein \(z \in U \) gibt mit \(f(z) \in \mathbb{R} \) und \(f(z) > 1 \).

b) Bleibt die Aussage in (a) richtig, wenn man
 i) auf die Voraussetzung \(f(0) = 0 \) verzichtet, oder
 ii) \(U \) durch eine beliebige offene Teilmenge von \(\mathbb{C} \) mit \(0 \in U \) und \(1 \in U \) ersetzt?

Aufgabe 5:

Sei \(U := \mathbb{R}^2 \setminus \{(0,0)\} \) und \(f = (f_1, f_2) : U \to \mathbb{R}^2 \) stetig differenzierbar mit
\[\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x} \text{ auf } U \]

und
\[\lim_{n \to \infty} f \left(\frac{1}{n}, 0 \right) = (1, 0), \quad \lim_{n \to \infty} f \left(-\frac{1}{n}, 0 \right) = (-1, 0). \]

Zeigen Sie, dass es eine Folge \((x_n, y_n)_{n \in \mathbb{N}} \subseteq U \) gibt mit
\[\lim_{n \to \infty} (x_n, y_n) = (0, 0), \quad \lim_{n \to \infty} f(x_n, y_n) = (0, 1). \]

(Hinweis: Nutzen Sie Hilfsmittel der Funktionentheorie.)