Thema Nr. 2
(Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Aufgabe 1:

a) Geben Sie eine vollständige und exakte Definition des größten gemeinsamen Teilers $\gcd(a, b)$ zweier ganzer Zahlen a, b mit $(a, b) \neq (0, 0)$ an.

b) Beweisen Sie mit Hilfe Ihrer Definition die Formel

$$ \gcd\left(\frac{a}{\gcd(a, b)}, \frac{b}{\gcd(a, b)} \right) = 1 $$

(6 Punkte)

Aufgabe 2:

Sei G eine endliche Gruppe und sei $n \geq 1$ mit $\gcd(n, \text{ord}(G)) = 1$. Zeigen Sie, dass es zu jedem Element $a \in G$ ein eindeutig bestimmtes Element $b \in G$ gibt mit $b^n = a$.

(7 Punkte)

Aufgabe 3:

Sei K ein endlicher Körper mit q Elementen und sei $f : K \rightarrow K$ eine Abbildung.

Zeigen Sie, dass es ein Polynom $p \in K[X]$ gibt mit $p(a) = f(a)$ für alle $a \in K$, und beweisen Sie, dass das Polynom p eindeutig bestimmt ist, wenn man zusätzlich \(\text{grad}(p) < q \) fordert.

(8 Punkte)

Aufgabe 4:

Sei $\alpha \in \mathbb{C}$ eine Nullstelle des Polynoms $f = X^3 - 3X + 1 \in \mathbb{Q}[X]$. Zeigen Sie:

a) Das Polynom f ist irreduzibel über \mathbb{Q}.

b) Zeigen Sie, dass auch $\alpha^2 - 2$ eine Nullstelle von f ist. Folgern Sie, dass $\mathbb{Q}(\alpha)$ der Zerfallungskörper von f über \mathbb{Q} ist und dass die Galoisgruppe von f über \mathbb{Q} isomorph zu $\mathbb{Z}/3\mathbb{Z}$ ist.

c) Es gilt $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$.

(9 Punkte)