Mathematikexamen
- Fachwissenschaft - Gymnasium - Algebra (63911, 63912) |
Themenübersicht
|
Jahr
(H=Herbst, F=Frühjahr) |
23
F |
22
H |
22
F |
21
H |
21
F |
20
H |
20
F |
19
H |
19
F |
18
H |
18
F |
17
H |
17
F |
16
H |
16
F |
15
H |
15
F |
14
H |
14
F |
13
H |
13
F |
12
H |
12
F |
11
H |
11
F |
10
H |
10
F |
09
H |
09
F |
08
H |
08
F |
07
H |
07
F |
06
H |
06
F |
05
H |
05
F |
04
H |
04
F |
03
H |
03
F |
02
H |
02
F |
01
H |
01
F |
Themennummer |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
I
II
III |
Gruppe 1 (Definition; Untergruppe; direktes Produkt, zyklische Gruppen, Nebenklassen, Satz von Lagrange) |
II/1c |
|
|
I/4b
II/1
III/1 |
|
|
|
III/2 |
II/1 |
|
III2 |
|
|
II2 |
I3 |
II2 |
III1 |
III3 |
|
II5
III3 |
II2 |
|
I1
II2 |
II2 |
I2 |
III2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gruppe 2 (Normalteiler, Faktorgruppe) |
|
|
|
I/4a |
|
I/4 |
II/3
III/1 |
|
|
I/2
II/3 |
II5 |
III2 |
|
|
|
|
|
|
III1 |
|
II1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gruppe 3 (Homomorphismus; Isomorphiesätze, Satz von Cayley) |
I/1 |
I/1a
I/1b
II/5 |
I/3 |
II/5
III/2 |
III/3 |
II/1b |
II/4a |
|
III/5 |
|
|
I3 |
|
|
|
III2 |
|
|
II3 |
|
|
III1 |
|
III1 |
III2 |
II3 |
I5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gruppe 4 (Operationstheorie; Klassengleichung) |
III/1 |
I/1c |
III/1 |
|
|
II/2
III/2 |
I/2
III/3 |
|
I/2
II/2
III/2 |
|
|
II2 |
|
II1 |
|
|
II4 |
I4
II3 |
|
II2 |
I5 |
I1
II1
III2 |
III1 |
|
II3 |
II2
III1 |
I1
II2
III3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gruppe 5 (Sylowsätze; Klassifikation von kleinen endlichen Gruppen) |
II/2
III/3 |
III/3 |
II/2 |
|
I/4 |
|
|
I/4
II/4
III/3 |
|
III/2 |
III3 |
III1 |
I3
II1
III2
|
III3 |
III3 |
I3 |
|
II4
III1 |
I1 |
I2 |
I3 |
|
I2 |
I1 |
|
I1 |
II1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ringe 1 (Definition; Einheit, Nullteiler, nilpotent, idempotent , Primelement, irreduzibles Element; Unterring; direktes Produkt von Ringen, Faktorring; Isomorphie und Isomorphiesätze) |
I/2 |
|
I/4
III/3 |
|
I/1
II/3 |
II/1d
III/3 |
|
|
I/3
III/1 |
III/5 |
I2 |
III3 |
II2
III3
|
III4 |
I4
II2 |
|
III3 |
III4 |
II2 |
|
III2 |
I4
II3 |
I3
II3 |
|
|
|
II3
III2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ringe 2 (Ideale, Primideale, maximale Ideale) |
III/5 |
I/2
II/2
III/5 |
II/3 |
|
III/4 |
|
|
II/2 |
|
|
|
|
|
I3 |
III4 |
|
|
II1 |
|
|
|
|
|
|
|
I3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ringe 3 (Polynomringe, Einsetzhomomorphismus, Interpolationsformel von Lagrange) |
|
II/3 |
|
I/3 |
II/2 |
I/2
II/4 |
II/4b |
|
I/4
III/4 |
|
II3
III4 |
I2
I4 |
III4 |
|
|
|
II2 |
I2 |
I3
II1 |
I4 |
I4 |
II2 |
III3 |
I3
II3 |
|
I4
II1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ringe 4 (Faktorielle Ringe, Irreduzibiltätskriterien) |
II/3 |
|
|
I/1 |
III/1 |
III/1 |
II/2
III/5 |
|
|
II/1 |
I1
II1 |
I5 |
|
|
III2 |
|
II3 |
|
III3 |
|
II3
III4 |
III5 |
|
I2
III4 |
II2 |
II4
III3 |
II4
III1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Körper 1 (Definition, Primkörper, Charakteristik, algebraisches/transzendentes Element, Körpererweiterung, Minimalpolynom, Gradsatz) |
|
|
I/5 |
II/2a
III/3 |
I/3 |
|
|
I/3
II/3 |
II/4 |
III/2 |
|
I1 |
II4 |
|
II4 |
II4 |
I4 |
|
|
III2 |
|
|
|
III2 |
I4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Körper 2 (Kreisteilungskörper, reine Polynome, biquadratische Polynome) |
II/4 |
I/5 |
I/1 |
II/3
III/5 |
|
|
|
|
III/3 |
II/4 |
I3 |
|
|
|
II3 |
|
III4 |
I3 |
|
|
III5 |
|
|
|
|
I5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Körper 3 (Körperisomorphismen, Körperisomorphismusfortsetzungssatz, Konstruktionsprinzipien von Galoisgruppen) |
|
I/4
II/4 |
III/5 |
II/4 |
|
I/5
III/5 |
|
III/5 |
|
III/2 |
II2 |
II5
III5 |
I2 |
|
|
I5 |
|
|
|
III1 |
I2
II5 |
I3
III3 |
|
II4 |
II4
III3 |
|
I2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Körper 4 (Hauptsatz der Galoistheorie) |
I/3
III/4 |
I/3 |
II/5
III/4 |
I/5 |
I/5
II/4 |
II/5 |
I/4
II/5
III/4 |
I/2 |
I/5
II/5 |
I/4
II/5
III/3 |
I4
III5 |
II4
III4 |
I1
II5
|
I5
II4
III5 |
I5
III5 |
I4
II5
III4 |
I5 |
I1
II2
III5 |
I2
II4
III4 |
I5
II3 |
|
II4 |
I5
II4
III2 |
|
|
III4 |
I4
II5
III5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Endliche Körper |
I/4
II/5 |
III/4 |
II/4 |
II/2b
III/4 |
III/2
III/5 |
II/3
III/4 |
|
I/5
II/5
III/4 |
|
I/3
I/5 |
|
II3 |
I4
I5
II3
III1
III5 |
III2 |
|
III3 |
II5 |
|
I5 |
II1
III4 |
II4 |
|
|
|
|
III5 |
I3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Auflösbare Gruppen |
|
|
II/2 |
|
|
|
I/3 |
|
|
|
|
|
|
I1 |
II1 |
|
I3
III2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lineare Algebra |
I/5
II/1b
II/1d
III/2 |
II/1
III/1 |
I/1
II/1 |
I/2
III/3 |
I/2
II/5 |
I/3
II/1c |
I/1
II/1 |
|
|
II/2
III/4 |
|
II1 |
|
I2
II3
III1 |
I1
II5
III1 |
I2
II1 |
I1 |
II5 |
I4 |
I3 |
|
|
|
|
I1 |
II5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zahlentheorie |
II/1a |
III/2 |
I/2
III/2 |
|
|
I/1
II/1a |
I/5
II/4c
III/2 |
II/1
III/1 |
II/3 |
II/1 |
I5
II4 |
|
|
I4
II5 |
I2 |
I1
II3
III1 |
I2
II1 |
I5
III2 |
III2 |
II4
III5 |
I1 |
I2
III4 |
I4 |
I4
II1
III3 |
I3
II1
III1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Diverses |
|
|
|
|
II/1 |
|
|
I/1 |
I/1 |
I/1
III/1 |
III1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Letzte Bearbeitung: 31.07.2023, Kontakt: thomas.weth@fau.de
|